Distance-based transfer function design: Specification Methods and Applications
نویسندگان
چکیده
We employ distances as a second dimension for transfer function (hereafter TF) specification. Distances refer to selected reference shapes. When distance-based TFs are applied to medical volume data and anatomic structures as reference shapes, they can support diagnostic procedures and therapy planning. As an example, distance-based TFs may be used to explore the neighborhood of a tumor which is essential to assess whether a surgical removal is feasible. In this paper, we discuss methods to specify 2d distance-based TFs, the use of predefined but adjustable templates to reduce the interaction effort and an efficient implementation of these TFs.
منابع مشابه
A Hybrid Time Series Clustering Method Based on Fuzzy C-Means Algorithm: An Agreement Based Clustering Approach
In recent years, the advancement of information gathering technologies such as GPS and GSM networks have led to huge complex datasets such as time series and trajectories. As a result it is essential to use appropriate methods to analyze the produced large raw datasets. Extracting useful information from large data sets has always been one of the most important challenges in different sciences,...
متن کاملA Quartic Quality Loss Function and Its Properties
We propose a quartic function to represent a family of continuous quality loss functions. Depending on the choice of its parameters the shape of this function within the specification limits can be either symmetric or asymmetric, and it can be either similar to the ubiquitous quadratic loss function or somewhat closer to the conventional step function. We examine this family of loss functions i...
متن کاملارزیابی روشهای گروهبندی ژنوتیپ های کلزا با استفاده از تجزیه تابع تشخیص خطی فیشر
Discrimination function analysis is a method of multivariate analysis that can be used for determination of validity in cluster analysis. In this study, Fisher’s linear discrimination function analysis was used to evaluate the results from different methods of cluster analysis (i.e. different distance criteria, different cluster procedures, standardized and un-standardized data). Furthermore, H...
متن کاملارزیابی روشهای گروهبندی ژنوتیپ های کلزا با استفاده از تجزیه تابع تشخیص خطی فیشر
Discrimination function analysis is a method of multivariate analysis that can be used for determination of validity in cluster analysis. In this study, Fisher’s linear discrimination function analysis was used to evaluate the results from different methods of cluster analysis (i.e. different distance criteria, different cluster procedures, standardized and un-standardized data). Furthermore, H...
متن کاملSystem Identification Based on Frequency Response Noisy Data
In this paper, a new algorithm for system identification based on frequency response is presented. In this method, given a set of magnitudes and phases of the system transfer function in a set of discrete frequencies, a system of linear equations is derived which has a unique and exact solution for the coefficients of the transfer function provided that the data is noise-free and the degrees of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006